CONSTRAINT PROGRAMMING

Introduction

Disadvantages of SAT solvers:

- The range of problems that can be solved is limited
 - integer variables can not be represented easily and efficiently
 - not every constraint can easily and efficiently be rewritten in CNF:
 - numerical constraints $x_1 + x_2 + \dots + x_n \ge 4$
 - graph constraints

 ("from node x node y can be reached", "the shortest path from node x to node y may not be longer than a")
 - dealing with optimization problems is not straightforward
- The specification language is not very simple to use

Constraint Programming

 <u>Constraint programming</u>: a programming paradigm in which a problem is specified declaratively in terms of high-level constraints, and solvers find solutions

"Constraint programming = Model (by user) + Search (by solver)"

Non-boolean Variables & Highlevel Constraints

		all	all								
 variables 			di	••	•			8	ll_	diff	f
$E_n \dots E_{qq}$		ff(ff(/			1
• variables have domains all_	diff(2	3					5)
all	diff(8	2		7	9	3)
$E_{xy} = \{1 \dots 9\}$:	6	4			9	8			
Constraints		E ₄₁	E ₄₂		2		7		4		
all_different([E _{1x}]),		E ₄₃	•••	9		8		1			
all_different([E _{x1}]),		:	4	2							
all_different($[E_{11}E_{33}]$),			8						3		
					6			2		1	
		4					1		8		
igh-level all difference constraint											

Solving

- Two approaches:
 - automatically translate high-level constraints into a lowlevel representation (like a CNF formula)

Domains

must be

finite

- MiniZinc (specialized language) + G12 (solvers)
- NumberJack (Python library)
- run a solver which directly supports high-level constraints

Common in constraint programming are finite domain solvers based on exhaustive search & propagation

Propagation

- Each (high-level) constraint is implemented in a propagator, which only operates on the variables listed in the constraint
- For each variable we store the **domain** of values the variable can still take, which may be
 - the complete domain (i.e., all values clearly only works for problems with finite domains)

 $D(x) = \{ 2 \}, D(y) = \{ 2, 3 \}$

 lower and upper bounds, i.e. the minimum and maximal value the variable can still take

Propagation

The task of the propagator is to maintain domain consistency, i.e. to shrink the domains of variables to values that they can still take

if domain $D(x) = \{2\}, D(y) = \{2, 3\}$ and constraint $x \neq y$ apply, then we can deduce that $D(y) = \{3\}$.

Bounds if domain $D(x) = \{1, ..., 5\}, D(y) = \{1, 2\}$ and constraint x+ y < 5 apply then we deduce that $D(x) = \{1, ..., 3\}$

CP Search

no domain to change any more

Search (Variables): propagate all constraints till fix point if contradiction found then return if at least one variable is not fixed yet then pick one variable V not fixed for each possible *value* of V do let *V=value* in this iteration Search (*Variables*) **od** else print solution in Variables

CP Search

all rows: all_different(row)
all columns: all_different(col)
all squares: all_different(square)

CP: Branch & Propagate

- propagate 2 (row)
- branch 4
- propagate 6 (square)

2		6	5	4
	2	7	9	3
		8	1	2
		1		
				1

Propagation

Propagators may implement special algorithms and data structures

all-different constraint:

all variables in a list must have a different value <u>algorithm 1:</u> use inequality constraints independently

$$D(x_{1}) = \{1, 2\}$$

$$D(x_{2}) = \{1, 3\}$$

$$D(x_{3}) = \{1, 3\}$$

$$X_{1} \neq X_{2}, X_{1} \neq X_{3}, X_{2} \neq X$$

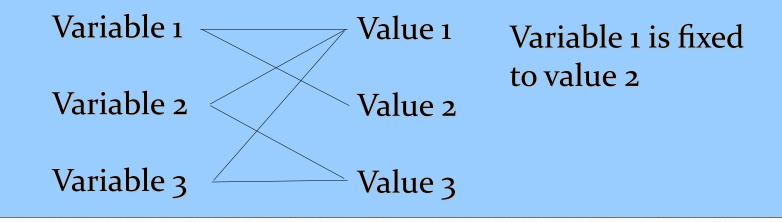
Propagation for inequality: if one variable is fixed, remove the corresponding value from the domain of the other variable → nothing happens in example

Propagation

Propagators may implement special algorithms and data structures

all-different constraint:

all variables in a list must have a different value <u>algorithm 2:</u> graph-based; bipartite matching



Comparison to

SAT solvers

- CP solvers support larger numbers of constraints & optimization
- When applied to CNF formulas, they search less efficiently as:
 - there is no clause learning
 - there is no propagation for pure symbols

These weaknesses led to the development of SMT SAT solvers (SAT-Modulo-Theories), which combine ideas of constraint programming and SAT solvers

Robert Nieuwenhuis, 2006.

Implementation issues

• When to run a propagator?

- when a variable changes? (In any way)
- when one particular bound changes?

for domain $D(x) = \{1, 2, 3\}, D(y) = \{1, 2, 3\}$ and constraint x + y < 5; should we propagate when we remove value 1 from D(y)? When we remove value 3?

In the CP literature, many different such strategies have been explored, called AC1, AC2, <u>AC3</u>, ... AC5

Implementation issues

Should we store simplified constraints during the search?

$$D(x) = \{1, 2, 3\}, D(y) = \{4\}, D(z) = \{1, 2\}, x + y + z < 10 \rightarrow x + z < 6$$

- Which order to select variables?
- Which order to select values?

Implementation issues

• How to branch over variables?

$$D(x) = \{1, ..., 10\}, D(z) = \{1, ..., 10\}, x + y < 20$$

Branch with $D(x)=\{c\}$ for all c in 1...10?

Branch with $D(x) = \{1..., 5\}$ and $D(x) = \{6, ...10\}$?

INTEGER LINEAR PROGRAMMING

Linear programming

One special type of constraint is the linear constraint:

• A *linear program* is a constraint optimization problem on real-valued variables with a linear optimization criterion and linear constraints, and **no** other constraints:

 $\begin{array}{ll} \text{maximize} \ c_1 x_1 + c_2 x_2 + \dots + c_n x_n \\ \text{where} & a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \leq b_1 \\ & a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \leq b_2 \\ & \vdots \\ & a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \leq b_m \end{array}$

Linear Programming Examples

$$\begin{array}{c|c} \textbf{maximize } x_1 + 2x_2 \\ \textbf{where } & x_1 + x_2 \leq 2 \\ & -x_1 \leq 0 \end{array} \quad x_1 = 0, x_2 = 2 \begin{array}{c} x_2 \\ \textbf{x}_2 \\ \textbf{region} \\ \textbf{z}_1 \\ \textbf{z}_1 \\ \textbf{z}_1 \\ \textbf{z}_1 \\ \textbf{z}_1 \\ \textbf{z}_1 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -2x_1 + 3x_2 \\ \text{where} & x_1 - x_2 \leq 2 \\ & -x_1 \leq 0 \\ & x_2 \leq 3.5 \end{array}$$

$$x_1 = 0, x_2 = 3.5$$

Integer Linear Programming

• Integer linear programming differs from linear programming in that we constrain some variables to integer values; if some variables are not integer, this is also referred to as **mixed** integer linear programming

$$\begin{array}{ll} \text{maximize} & -2x_1 + 3x_2 \\ \text{where} & x_1 - x_2 \leq 2 \\ & -x_1 \leq 0 \\ & x_2 \leq 3.5 \\ & x_1, x_2 \in \mathbb{Z} \end{array}$$

$$x_1 = 0, x_2 = 3$$

Solvers Linear Programming

- Linear programs can be solved in polynomial time by using *interior point* algorithms, which "walk through the interior of the feasible region"
- In practice, linear programs are often solved using simplex algorithms, which "walk over the outer rim of the feasible region" (the edges of the convex polytope)

Solvers for

Integer Linear Programming

- There are no polynomial solvers for integer linear programming
- Most solvers are based on *cut-and-branch*
 - solve the program without integer constraints
 - if solution is not integer, try to add a "clever" linear constraint that "cuts" the non-integer solution from the feasible solution space, without changing the feasible integer solutions
 - branch if no such linear constraint can be found, for the two closest integer values for one of the variables that does not have an integer value

Graph Coloring using ILP

Example: we could use ILP to solve graph coloring with *k* colors (left: constraint in SAT form)
for each node *i*, create a formula
(right: constaint in ILP form) $\phi_i = p_{i1} \vee p_{i2} \vee \cdots \vee p_{ik} \quad x_{i1} + x_{i2} + \cdots + x_{ik} \ge 1$ indicating that each node *i* must have a color • for each node *i* and different pair of colors *c*, and *c*, create a formula $\phi_{ic_1c_2} = \neg p_{ic_1} \lor \neg p_{ic_2} \qquad (1 - x_{ic_1}) + (1 - x_{ic_2}) \ge 1$ indicating a node may not have more than 1 color • for each edge, create *k* formulas $\phi_{ijc} = \neg p_{ic} \lor \neg p_{jc} \qquad (1 - x_{ic}) + (1 - x_{jc}) \ge 1$ indicating that a pair of connected nodes *i* and *j* may not both have color *c* at the same time

• for each variable the requirement that its value can only be zero or one

Knapsack

using ILP

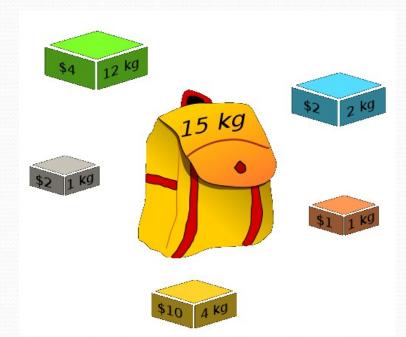
- Given:
 - N items with sizes a_p,...,a_N,
 prices p_p,...,p_N
 - A maximum weight W

• Find:

• a subset of items $I \rightarrow variables x_i$, each with domain {0,1}

Such that:

- $\sum_{\substack{i=1\\n}}^{n} p_i x_i$ is **maximal** (very valuable knapsack)
- $\sum_{i=1}^{\infty} a_i x_i \leq W$ (knapsack with low weight)



Also try: Set Cover

Comparison

		Variables	Constraints	Optimization	Special Technology
	SAT Solver	Boolean (0/1)	Clauses	Not supported directly	Clause learning, unit propagation, pure literals
	CP Finite Domain Solver	Finite domain	Many	Many	Propagation
	LP Solver	Real	Linear	Linear	Interior points, simplex
	ILP Solver	Integer	Linear	Linear	Interior points, simplex, cut- and-branch

Comparison

		Variables	Constraints	Optimizatio n	Special Technology
S	AT Solver	Boolean (0/1)	Clauses	Not supported directly	Clause learning, unit propagation , pure literals
D	P Finite omain olver	Finite domain	Many	Many	Propagatio n